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This study introduces a novel neural network-based pipeline for predicting clinical 
pregnancy rates in IVF treatments, integrating both clinical and laboratory data. We 
developed a metamodel combining deep neural networks and Kolmogorov-Arnold 
networks, leveraging their complementary strengths to enhance predictive accuracy and 
interpretability. The metamodel achieved robust performance metrics after training and 
fitting on 11500 clinical cases: accuracy = 0.72, AUC = 0.75, F1 score = 0.60, and Matthews 
Correlation Coefficient of 0.42. According to morpho-kinetical embryo evaluation, our 
model’s PRC of 0.66 significantly improves over existing time-lapse systems for 
pregnancy prediction, demonstrating better handling of imbalanced clinical data. 

The metamodel’s calibration metrics (Brier score = 0.20, expected calibration error = 0.06, 
maximum calibration error = 0.12, Hosmer-Lemeshow test p-value = 0.06) indicate robust 
reliability in predicting clinical pregnancy outcomes. We validated the model’s 
reproducibility using an independent dataset of 665 treatment cycles, showing close 
alignment between predicted and actual pregnancy rates (58.9% vs. 59.1%). With the 
Bayesian method, we proposed a robust framework for integrating historical data with 
real-time predictions from neural networks, enabling a transition from retrospective to 
prospective analysis. 

Our approach extends beyond conventional embryo selection, incorporating 
post-analytical phase evaluation in the IVF laboratory. This comprehensive framework 
enables detailed analysis across different patient subpopulations and time periods, 
facilitating the identification of systemic issues and IVF protocol optimization. The 
model’s ability to track pregnancy probabilities over time and staff members allows for 
both outcome prediction and retrospective and prospective assessment of IVF treatment 
efficacy, providing a data-driven strategy for continuous improvement in assisted 
reproductive technology. 

INTRODUCTION 

Despite our extensive knowledge and theories regarding 
preimplantation embryo development, detailed descrip-
tions of implantation processes, and stringent laboratory 
protocols, we remain far from fully understanding why suc-
cess and failure occur in in vitro fertilization (IVF) treat-
ments. It’s possible that we are thinking in the wrong di-
rection or operating with incorrect parameters. This raises 
the possibility that a fundamentally different approach to 
“thinking” and analyzing our work, driven by artificial in-
telligence (AI), could bring us closer to solving this puzzle. 
Although AI systems have found extensive applications 

in IVF, a detailed algorithm for working with them has not 

yet been fully developed.1 It is currently possible to accu-
rately describe the morpho-kinetic changes in individual 
embryos during in vitro culture, predict potential outcomes, 
and identify the most promising embryos for implantation 
through such approaches. However, these algorithms can-
not always be extrapolated to patients from different clinics 
in various regions and countries, and their successful ap-
plication requires additional validation in specific labora-
tories, taking into account the individual characteristics of 
the patient population.2 

In our study, we aimed to integrate laboratory records of 
individual embryo development, which represent the most 
accessible and standardized approach for obtaining key 
quality indicators across laboratories, into a unified neural 
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network model framework. Our neural network model in-
troduces a novel perspective on the feature selection 
process essential for predicting the probability of clinical 
pregnancy with machine learning (ML). Unlike traditional 
methods that rely on ranking classifications, our model fo-
cuses on precise and individualized assessments of key per-
formance indicators (KPIs) with conformal prediction of 
probabilities from model outputs. It is also important to 
note that any evaluation system within an IVF laboratory 
operates as part of a comprehensive quality management 
framework and should not be considered in isolation. A ro-
bust KPI evaluation system is essential to ensure optimal 
outcomes and continual improvement. A fully functioning 
quality management and control system must include the 
process’s pre-analytical, analytical, and post-analytical 
phases. AI models have already found broad application in 
many of these phases, and the logical outcome of the de-
velopment of two high-tech fields of modern science is the 
combination of AI-assisted data analysis and IVF quality 
management. Currently, the AI algorithms are primarily fo-
cused on either the pre-analytical phase (assessing success 
rates based on initial clinical data and patient treatment 
history) or the analytical phase — evaluating and select-
ing individual gametes or embryos based on various para-
meters.3,4 Meanwhile, modern AI methods largely overlook 
the post-analytical phase of data analysis. For its integra-
tion, we utilized neural networks in our study because they 
can identify a broader spectrum of associations than other 
ML methods, thanks to their ability to recognize highly 
nonlinear associations among input parameters, and they 
are less sensitive to data collinearity than all embryo eval-
uation protocols have. 
To fully harness the potential of AI in IVF, it is essential 

to integrate AI in a single robust pipeline approach, ensur-
ing that each stage of it is effectively managed.5,6 The con-
cept of the pipeline, drawn from business and engineering 
fields, represents a well-organized sequence of steps that 
transform raw inputs into desired outputs, ensuring consis-
tency, quality, and efficiency throughout the process. IVF 
treatments, like business pipelines, involve multiple stages 
— each critical to the final outcome, from patient prepara-
tion and ovarian stimulation to embryo culture and trans-
fer. Our neural network-based method for predicting preg-
nancy probabilities adopts this pipeline approach, offering 
a systematic, data-driven framework that integrates quality 
assurance and risk management at every phase of IVF treat-
ment. 

MATERIALS AND METHODS 

DATA COLLECTION AND STUDY DESIGN 

We conducted a retrospective analysis of 11,500 IVF treat-
ment cycles from three independent IVF clinics. Each cycle 
was evaluated using an individual KPIs measurement sys-
tem.7 The positive cycle outcome was established as clinical 
pregnancy that was confirmed by detecting the fetus’s heart 
beating through ultrasound examination 25 days after em-
bryo transfer. All cycles with missing data values were dis-

carded from the study. This dataset was utilized to develop, 
validate, and test neural network models for predicting 
clinical pregnancy rates. For that purpose, we split data to 
train (70%), validate (20%), and test (10%) sets with a strat-
ified random sampling approach. 
We adhered to the recommendations set forth by the 

European Society of Human Reproduction and Embryology 
(ESHRE) and the Gardner blastocyst grading system for em-
bryo assessment. “good blastocysts” were classified within 
this framework as those graded 3BB or higher. The KPI 
analysis covers nine different performance metrics: number 
of COCs (Cumulus-Oocyte Complexes); fertilization rate; 
blastocyst rate; TGBDR (Total Good Blastocyst Develop-
ment Rate); oocyte retrieval rate; KPIScore; MII (mature 
oocytes); number of blastocysts on day 5; and blastocysts 
on day 6-7 development. 

FEATURE SELECTION 

The KPIs we analyzed provide a comprehensive view of em-
bryologists’ performance at various stages of IVF, based on 
the Vienna consensus opinion.7 The features selected were 
those identified as having a significant impact on the out-
come of IVF treatment according to an independent ma-
chine learning (ML) algorithm, XGBoost. These features 
include: “Age”, “Attempt number”, “Number of follicles”, 
“Number of oocytes retrieved”, “Number of inseminated 
oocytes”, “2PN”, “Number of cleaved embryos”, “Number of 
blastocysts”, “Number of good blastocysts”, “Fertilization 
rate”, “Cleavage rate”, “Blastocyst formation rate”, “Good 
blastocyst rate”, “Oocyte retrieval rate”, “Number of em-
bryos on day 5”, “Cryo embryos”, “Transfer Day”, “Embryos 
transferred”, and ranking sum of the clinical and laboratory 
indicators - “KPIScore”. 
Our analysis of individual embryologists’ performance 

revealed no statistically significant differences (p > 0.05) in 
achieving KPIs such as IVF polyspermy rate, ICSI degrada-
tion rate, ICSI and IVF fertilization rates, and good blas-
tocyst rate across the selected treatment cycles used for 
model training. 

MODEL VALIDATION 

To assess the model’s predictive accuracy, we compared 
the forecasted clinical pregnancy rates against actual out-
comes across various time intervals, including quarterly 
and monthly analyses. For this purpose, we employed a new 
dataset comprising 665 treatment cycles from the Geor-
gian-German Reproductive Center in Tbilisi, Georgia. A 
thorough evaluation was performed, contrasting the 
model’s outputs with the observed clinical results. 

ETHICAL CONSIDERATIONS 

Patient informed consent was not required for this study 
due to its retrospective nature and the use of fully de-iden-
tified embryo development data. No medical interventions 
were performed on the subjects, and no biological samples 
were collected from patients for model development, so the 
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study was entirely non-invasive for both patients and their 
embryos. 

NEURAL NETWORKS DEVELOPMENT 

Python 3.11, Scikit-learn 1.4.2, and Sklearn 1.4 were used to 
implement machine learning models and statistical mod-
eling in DataSpell 2024.2 IDE. The deep learning neural 
network (DNN) model has been developed and executed 
in the GPU PyCharm 17.0.10 environment with the Ten-
sorflow 2.15.0 and Keras library 2.14.0. The Kolmogorov-
Arnold networks (KAN) were constructed with Pykan pack-
age version 0.2.1. Both models were combined with a 
stacking approach in the final DNN-KAN metamodel. The 
FTTransformerClassifier was built and evaluated with 
Mambular 0.2.2 python package in CPU GoogleColab envi-
ronment to compare our ensemble model with other ap-
proaches. All models were calibrated with the Venn-Abers 
method of conformal prediction with Python package venn-
abers 1.4.5 to obtain probabilities of pregnancy achieve-
ment from neural network predictions. A comparative 
analysis of prediction errors was conducted with the area 
under the receiver operating characteristic curve (AUC), 
precision-recall curve (PRC), accuracy, F-1 score, specificity 
(true negative rate), sensitivity (recall), precision (positive 
prediction value) and Matthew’s correlation coefficient 
(MCC). 
To evaluate the performance of the metamodel after cal-

ibration, several key quality metrics were utilized: Brier 
score - quantifies the mean squared difference between 
predicted probabilities and actual binary outcomes, serving 
as an indicator of overall model accuracy; expected cali-
bration error (ECE) - the average discrepancy between pre-
dicted probabilities and the true outcome frequency; max-
imum calibration error (MCE) - represents the largest 
deviation between predicted probabilities and actual out-
comes, highlighting the worst-case scenario for model cal-
ibration; Hosmer-Lemeshow test - statistical test compares 
the observed and predicted outcomes in different risk 
deciles, providing a p-value to assess the goodness of the 
fit. A non-significant p-value (< 0.05) indicates that the 
model’s predicted probabilities closely align with observed 
outcomes, reflecting adequate calibration. To evaluate the 
calibration of our model, we employed the Mean Squared 
Error (MSE), which allowed us to assess how well-calibrated 
the model’s predictions were, particularly in relation to 
the real-world data from each clinic. Calibration was fur-
ther refined by comparing predicted versus observed suc-
cess rates, ensuring that the model’s probabilistic outputs 
closely aligned with clinical reality. 

STATISTICAL ANALYSIS 

Descriptive statistics were chosen based on data distribu-
tion: for normally distributed quantitative indicators, mean 
and standard deviation (SD) with 95% confidence intervals 
(CI) were used, while median and interquartile range 
(Q1-Q3) were employed for non-normally distributed data, 
as determined by the Shapiro-Wilk test. For statistical 
analysis a p-value < 0.05 was used as the significance 

threshold. Comparison of groups based on quantitative in-
dicators was performed using one-way analysis of variance 
(ANOVA) for normally distributed data or the Mann–Whit-
ney U test for non-normally distributed data, followed by 
post hoc comparisons when significant differences were de-
tected. The Chi-square test was used to analyze discrep-
ancies between predicted and actual outcomes of embryo 
transfers, specifically evaluating the role of staff members 
in the process. 

RESULTS AND DISCUSSION 

Kolmogorov-Arnold Networks (KANs) represent a novel ap-
proach that offers a compelling alternative to traditional 
Multi-Layer Perceptrons (MLPs) and Deep Neural Networks 
(DNNs). While DNNs are rooted in the universal approxi-
mation theorem, which guarantees their capability to ap-
proximate any continuous function given sufficient depth 
and complexity, KANs are grounded in the Kolmogorov-
Arnold representation theorem.8 The structural differences 
between KANs and DNNs significantly affect their perfor-
mance and interpretability. In DNNs, layers of neurons 
process data through node-based activation functions, of-
ten resulting in highly non-linear transformations that, 
while powerful, can be challenging to interpret. KANs on 
the other hand, apply activation functions directly to the 
interactions between neurons, leading to models that are 
more interpretable and capable of maintaining or improv-
ing accuracy compared to DNNs. 
One of the most striking differences in performance be-

tween these two architectures is in the distribution of their 
predictions. KAN models tend to exhibit a wider spread in 
prediction ranges compared to DNNs, suggesting that KANs 
may better capture the underlying variability in the data. 
This characteristic is particularly advantageous in tasks re-
quiring high sensitivity to input variations, such as scien-
tific computing or tasks with complex, small-scale datasets. 
Given the complementary strengths of DNNs and KANs, in-
tegrating these two architectures into a single metamodel 
presents a sophisticated approach that could significantly 
enhance predictive accuracy and interpretability. Especially 
integration is important in complex applications like IVF, 
where new methods in data analytics with ML and AI are 
highly conservative.3 

Training both components of the metamodel on the 
same dataset ensures that they are exposed to the same un-
derlying patterns and variations in the data. This unified 
approach allows the metamodel to leverage diverse rep-
resentations from each network — DNNs providing broad, 
non-linear approximations and KANs offering detailed, in-
terpretable mappings. The result is a more robust and ac-
curate final prediction, as the metamodel integrates these 
complementary perspectives. This integration also im-
proves generalization. The DNN-KAN metamodel can re-
duce the risk of overfitting by balancing the detailed focus 
of KANs with the broader, high-capacity learning of DNNs. 
This balance is crucial in domains like IVF outcome pre-
diction, where the dataset may contain highly variable and 
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sensitive data, and overfitting can lead to unreliable predic-
tions. 
Trained on our dataset with balanced class weights, the 

DNN model achieved an accuracy = 0.70, AUC = 0.74, PRC 
= 0.64, precision = 0.47, and recall = 0.44. The KAN model 
had similar performance metrics but with a higher ability to 
recognize positive pregnancy cases: accuracy = 0.68, AUC = 
0.76, PRC = 0.61, precision = 0.61, and recall = 0.62. 
The DNN model displays a narrower prediction range, 

indicating a more conservative approach, with predictions 
clustering tightly around certain values. The KAN model 
outperforms the DNN model significantly across all met-
rics, shows a broader range of predictions, reflecting more 
flexibility but also potential uncertainty. The KAN model’s 
wider prediction spread and fewer outliers suggest it in-
corporates a broader range of factors, potentially making 
it more adaptable but less consistent in certain cases. The 
DNN model’s tighter prediction clustering indicates higher 
consistency but less adaptability to varied scenarios. In that 
case DNN model’s predictions may be more reliable for 
clinical settings where consistent decision-making is cru-
cial - QC/QA analysis. The KAN model’s range might be 
beneficial in more nuanced cases where flexibility and a 
broader view of potential outcomes are needed - individual 
decisions in single IVF protocol and in troubleshooting 
methods. 
Bothe models significantly (U-Statistic = 230.0, p-value 

= 0.002) overperformed other ML methods with AUC = 0.64 
(CI 0.61 - 0.67) that are reported as models for CPR predic-
tion9‑11 and showed the same AUC metrics with the con-
volutional neural networks (CNNs) in predicting clinical 
outcomes with static images (AUC = 0.68–0.71)12,13 or 
time-lapse videos (AUC = 0.64–0.67).14,15 

After fine-tuning the hyperparameters for all evaluated 
networks, our model’s validation loss was 0.56, with a val-
idation accuracy of 69%. This is notably lower than the av-
erage validation loss of 0.99 ± 0.15 and higher than the av-
erage validation accuracy of 57.54% ± 6.07% achieved by 
the CNN models for embryo assessment.16 Following Venn-
Abers calibration, both models demonstrated improved 
performance in terms of probability calibration. 
To enhance the power of our approach, we combined 

both models into one ensemble stacking metamodel. This 
DNN-KAN model achieved an accuracy of 0.72 (SD = 0.04), 
AUC of 0.75 (SD = 0.05), PRC of 0.66 (SD = 0.02), precision 
of 0.70 (SD = 0.02), recall of 0.52 (SD = 0.05), F1 score 
of 0.60 (SD = 0.05), and maximum MCC of 0.42 on 5-fold 
cross-validation. 
In the next step of our research to identify the best 

model architecture, we implemented transformer neural 
networks with our data. Transformer architectures have 
gained significant attention in various fields, including nat-
ural language processing and tabular data analysis, due 
to their exceptional ability to process sequential data and 
capture intricate patterns through attention mechanisms. 
These models are particularly adept at managing complex 
datasets, such as those encountered in IVF studies, where 
relationships between variables can be context-dependent. 

Given these advantages, we explored using a trans-
former-based model, specifically the FTTransformerClassi-
fier, to assess its effectiveness compared to our DNN-KAN 
ensemble. The transformer classifier demonstrated perfor-
mance metrics comparable to those of our developed meta-
model: accuracy = 0.72, AUC = 0.79, PRC = 0.68, precision 
= 0.63, recall = 0.64, F1 score = 0.63, and MCC = 0.42. This 
comparison highlights the robustness of our metamodel in 
handling the specific complexities of our data, emphasiz-
ing that while transformers are effective, alternative archi-
tectures like our model can perform equally well in certain 
contexts. 
When comparing our metamodel with preanalytical pre-

dictive approaches, we observed that its performance met-
rics align with those reported by other AI-based solutions 
in IVF, which typically achieve an AUC of 0.62–0.77.17‑20 

Furthermore, our metamodel demonstrated comparable 
performance (U-statistic = 145.0, p-value = 0.471) with an-
alytical time-lapse systems utilizing AI and additional clin-
ical data for CPR and implantation predictions (AUC = 
0.72-0.78),21 as well as with CNN models for static images 
enhanced with clinical features (AUC = 0.74),22 and a live 
birth prediction CNN+MLP model based on multimodal 
blastocyst evaluation incorporating factors such as mater-
nal age, the day of blastocyst transfer, antral follicle count, 
retrieved oocyte number, and endometrium thickness (AUC 
= 0.77, CI = 0.75–0.79).23 

Despite the significant body of work dedicated to AI in 
embryo selection, most studies are limited to analyzing and 
comparing a narrow set of metrics. Traditionally, in the 
medical field — and in IVF in particular — the performance 
of a model is often described using the AUC without any 
calibration of the probabilities. However, it has consider-
able limitations, especially in the context of imbalanced 
datasets, which are common in clinical IVF outcome data. 
In the realm of AI, relying solely on AUC and on raw data 
of classifications can be misleading and may not always 
provide accurate insights for subsequent clinical applica-
tions. CNN models have gained the most traction in the 
laboratory phase of embryo selection, primarily by evaluat-
ing morpho-kinetic data obtained from time-lapse imaging. 
However, their utility is contingent on calibrating proba-
bilistic predictions reflecting the true likelihood of success. 
Poorly calibrated models can lead to misinformed clini-
cal decisions, either overestimating or underestimating the 
chances of pregnancy. While this approach is widely used, 
it often overlooks other metrics, such as precision-recall 
curve (PRC), which may be more suitable for training AI 
models on imbalanced datasets and offers a deeper eval-
uation of a model’s generalization ability and the repro-
ducibility of its predictions across different IVF centers. 
Unfortunately, PRC is often neglected and, at best, is only 
briefly mentioned in the supplementary materials of scien-
tific articles.15 For instance, one of the most widely used 
time-lapse assessment models, IDAScore, demonstrates 
outstanding AUC reporting values as high as 0.95.24 How-
ever, the actual PRC values for this model range from a 
modest 0.45 to 0.55, indicating a potential disconnect be-
tween AUC and the model’s real-world predictive perfor-
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mance. On the other hand, using static images instead of 
video sequences has shown better optimization of the pre-
cision-recall balance, with AUC values around 0.72,25 but 
only a marginal improvement in PRC, which ranges from 
0.53 to 0.63. In our metamodel, we achieved mean PRC 
of 0.66, representing a notable improvement across others 
and demonstrating that our approach is good enough for 
handling the imbalanced nature of clinical and laboratory 
data. 
Leveraging the metamodel with different integrated ar-

chitectures, we performed a comparative analysis of actual 
and predicted clinical pregnancy rates over various time in-
tervals to assess the likelihood of achieving pregnancy. The 
conformal prediction calibration of the model output was 
performed with an odds ratio of 6.01 (SD = 0.65). The main 
calibration metrics of the model performance were: Brier 
score = 0.20; ECE = 0.06; MCE = 0.12; Hosmer-Lemeshow 
test statistic = 15.25 with p-value = 0.06. These results indi-
cate that the final model exhibits a robust calibration with 
a well-balanced Brier Score and a low ECE, suggesting ac-
curate probability predictions and signifying that the pre-
dicted probabilities are closely aligned with the actual out-
comes. The low level of MCE highlights improved 
consistency across different patient groups, and the Hos-
mer-Lemeshow test shows a non-significant p-value, re-
flecting that the predicted probabilities closely match the 
observed outcomes. According to that, we can conclude that 
Venn-Abers conformal prediction provides reliable uncer-
tainty estimates, which are critical for clinical decision-
making in IVF treatments. 
As with all AI systems, one of the key limitations of the 

developed metamodel is the necessity for specific calibra-
tion to individual IVF clinics. Without this adaptation, the 
model’s predictive power is diminished due to the inherent 
variability in patient demographics, treatment protocols, 
and clinical practices across different IVF centers. For in-
stance, when the non-calibrated model was applied across 
nine clinics in different cities in Russia and Kazakhstan, the 
AUC scores ranged from 0.55 to 0.73, with MCE = 0.89 and 
MSE = 0.19. This variability highlights the model’s incon-
sistent ability to distinguish between positive and negative 
pregnancy outcomes without the step of propria calibra-
tion. Such variations may result in biased predictions and 
reduced clinical utility in settings where the model has not 
been fine-tuned to account for specific clinical and popula-
tion characteristics. 
Further optimization of the site-specific calibration 

process could improve predictive accuracy even more. How-
ever, the current performance on well-calibrated data with 
MCE = 0.12 and MSE = 0.17 already demonstrates the effec-
tiveness of combining DNN and KAN architectures within a 
metamodel framework. 
This approach enabled us to set a lower threshold for the 

probability of clinical pregnancy occurrence for each year 
of operation. Our analysis revealed a statistically significant 
difference (p < 0.05) in the likelihood of clinical pregnancy 
between the 2021-2022 years cohort of patients and that of 
the 2023 year, with a decline in the likelihood of clinical 
pregnancy ranging from 10% at the beginning of the year 

to 20% by the third quarter of 2023 year. But no significant 
differences were found for the following KPIs in that period: 
fertilization rate (F-statistic = 3.47, p-value = 0.112); blas-
tocyst rate (F-statistic = 0.0083, p-value = 0.930); TGBDR 
(F-statistic = 0.633, p-value = 0.457); MII rate (F-statistic = 
0.133, p-value = 0.727); follicular oocyte index (F-statistic 
= 0.045, p-value = 0.839). Neither significant difference was 
observed with 2024-year data when we don’t have any se-
rious shifts of CPR: fertilization rate (F-statistic = 1.42, p-
value = 0.205); blastocyst rate (F-statistic = 0.58, p-value = 
0.769); TGBDR (F-statistic = 1.17, p-value = 0.326); MII rate 
(F-statistic = 1.42, p-value = 0.207); follicular oocyte index 
(F-statistic = 1.93, p-value = 0.072). The probabilities cal-
culated theoretically using the metamodel were consistent 
with the actual pregnancy outcomes during these periods. 
This alignment between our KPIs calculation and the meta-
model’s predictions suggests that the observed decline in 
clinical pregnancy rates from the third quarter of the 2023 
year is not attributable to the quality of patient prepara-
tion or laboratory procedures but rather to the initial clini-
cal data of the patients. 
It is remarkable that despite the variations in embryo 

transfer outcomes and patient groups, our laboratory KPIs 
were at a benchmark level according to the Vienna consen-
sus7: mean fertilization rate = 0.83 (CI = 0.70-0.96); mean 
blastocyst rate = 0.52 (CI = 0.48-0.56); mean TGBDR = 0.43 
(CI = 0.37-0.50). This provides a good data source for under-
standing the process and concluding that all noted changes 
in CPR across different periods do not originate from the 
embryology laboratory in this case. 
Clinical and laboratory components are intricately in-

tertwined in the IVF process, each playing a vital role in 
determining treatment success. This interdependence ne-
cessitates a comprehensive and collaborative approach to 
quality management, where both of them are aligned to 
achieve optimal patient outcomes.26 Our research aimed 
to address this need by comparing outcomes between staff 
members in cases where our metamodel predictions did 
not match actual results. Differentiating between patients 
treated by various doctors within a clinic often presents 
challenges, making it difficult to define clear competency 
boundaries in achieving quality targets. We compared ac-
tual CPRs achieved by individual reproductive specialists 
throughout 2023, using external audit programs across four 
different IVF centers. This analysis identified three doctors 
(No. 1, No. 2, and No. 3) with actual CPRs of 34.0%, 42.5%, 
and 40.5%, respectively, which exceeded their correspond-
ing theoretical thresholds of 33.60%, 33.33%, and 38.01% 
(p > 0.05). Conversely, three other doctors (No. 4, No. 5, and 
No. 6) exhibited significantly lower CPRs (9.60%, 24.82%, 
and 16.01%) compared to the model’s predicted probabili-
ties of 33.53%, 33.33%, and 37.25% for their patient groups 
(p < 0.01). The median values for fertilization and blas-
tocyst development rates exceeded the Vienna consensus 
benchmark for all conducted cycles. Based on these results, 
it can be concluded that doctors No. 4, No. 5, and No. 6 cur-
rently do not possess the necessary competency to work in-
dependently. Procedures conducted by these staff members 
require close supervision and mentoring from more experi-
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enced colleagues, such as doctors No. 1, No. 2, and No. 3. 
So, our pipeline is designed to offer a holistic approach that 
integrates clinical and laboratory data while providing in-
dividualized assessments of each participant’s performance 
in the process. This is achieved by evaluating the quality 
indicators of individual staff members and their impact on 
embryo transfer outcomes. Identifying areas for improve-
ment in clinical procedures and laboratory protocols is es-
sential, ensuring that every aspect of the IVF process is op-
timized for success. 
To compare outcomes where our metamodel’s predic-

tions did not align with actual clinical results, we analyzed 
64 complex cases from 665 embryo transfer results obtained 
in 2024. The Chi-square analysis yielded a p-value of 0.633 
for embryologists, indicating no statistically significant dif-
ferences. Similarly, the analysis produced a p-value of 0.588 
for physicians, also showing no statistically significant dif-
ferences. Interestingly, the p-value for embryologists was 
higher than that for physicians. Although these findings do 
not reach statistical significance, they may suggest a trend 
where the physician performing the embryo transfer has a 
more substantial impact on the outcome than the embryol-
ogist responsible for thawing and preparing the embryos for 
transfer. However, this observation requires careful inter-
pretation and should not diminish the importance of stan-
dardizing laboratory procedures and thoroughly analyzing 
laboratory performance metrics. 
Our data analysis further demonstrated the high accu-

racy of our developed model in predicting CPR, particularly 
evident when examining quarterly and monthly trends. For 
instance, in the second quarter of the 2024 year, following 
the integration of a comprehensive quality control system, 
the predicted pregnancy rate was 58.9%, closely matching 
the actual rate of 59.1%, with a minimal difference of just 
0.2 percentage points. The time series analysis of preg-
nancy probabilities highlighted significant variability (p < 
0.05) in individual case-level predictions, reflecting the 
complexity of predicting IVF success. KPIs analysis revealed 
no significant differences (p > 0.05) in pairwise comparisons 
between all embryologists during that period. However, 
when data were aggregated on a monthly or quarterly basis, 
a clear trend of improved prediction accuracy over time 
emerged. This trend was especially noticeable from late 
2023 into 2024, where the predicted and actual rates 
showed near-perfect alignment. Specifically, the mean ab-
solute error (MAE) between predicted and actual rates de-
creased from 0.15 in the first quarter of the 2022 year to 
0.03 in the second quarter, indicating a statistically signif-
icant improvement (p < 0.05, paired t-test). This improve-
ment can be attributed to several factors, including the 
increased volume of training data and iterative enhance-
ments to the model’s algorithm. 
Despite the overall high accuracy, there were instances 

where the model’s predictions deviated from actual out-
comes. These deviations can be attributed to factors such as 
clinical control changes — where improvements in stimula-
tion protocols and embryo transfer techniques might influ-
ence outcomes that the model cannot immediately account 
for — and external variables such as seasonal fluctuations, 

changes in patient demographics, or other medical factors 
that may impact results without being fully captured by the 
model.27 For example, in the second quarter of 2022 year, 
the model predicted a pregnancy rate of 14.3%, whereas the 
actual rate was 43.3%, marking the largest observed dis-
crepancy in our dataset. This deviation coincided with a 
period of laboratory reconstruction and suboptimal func-
tionality, leading us to exclude this period from further 
analysis. 
In extending our analysis, we incorporated the Bayesian 

method to transition from retrospective to prospective pre-
diction in IVF outcomes. The Bayesian approach provides a 
rigorous framework that combines historical data with real-
time predictions, enhancing the accuracy of our forecasting 
models. This method is particularly advantageous in IVF, 
where integrating clinical experience with machine learn-
ing outputs can significantly improve the reliability of pre-
dictions. 
By treating the neural network’s predicted probabilities 

as new observations, we calculated the posterior distribu-
tion, which merges past data with current predictions: a 
predicted success rate of approximately 58% for the next 
cycle, with a confidence interval ranging from 55% to 61%. 
This updated distribution offers a more refined estimate of 
the expected success rate, now inclusive of both historical 
trends and real-time insights, and serves as a prospective 
benchmark for our own laboratory, guiding our clinical de-
cision-making and providing a clear reference point for as-
sessing the effectiveness of our IVF protocols in upcoming 
cycles. 
With our pipeline, we performed KPI analysis for dif-

ferent patient subpopulations undergoing IVF treatment 
in our center across three groups: China, Georgia, and Is-
rael, according to our metamodel prediction distribution. 
First, we compared the most promising programs with the 
majority of oocyte donor cycles of China patients and for 
bad prognosis patients from Georgia. Statistically signifi-
cant differences between them were observed for the fol-
lowing indicators: blastocyst rate (p = 0.004), TGBDR (p 
= 0.009), FOI (p = 0.004). No statistically significant dif-
ferences were found for fertilization rate (p = 0.51) and 
MII rate (p = 0.52), which proves the invariance in treat-
ment approaches and laboratory parameters for all patient 
groups. Statistically significant differences between China 
and Israel groups were observed for MII rate (p < 0.001) 
and FOI (p < 0.001) due to different ovarian stimulation 
approaches in these patients. The same differences were 
found for Georgia and Israel patients with consistent labo-
ratory performance indicators: fertilization rate (p = 0.69), 
blastocyst rate (p = 0.41), TGBDR (p = 0.83). We achieved 
predicted CPR: China – 63.0%, Israel – 46.1%, Georgia – 
46.5% which is not more than 2% differ with the actual 
pregnancy rate in that groups. Similar results were obtained 
from patients’ data in Russia with a mean predicted CPR of 
36% (CI = 29-37%), which fully aligned with actual clinical 
data. 
Utilizing our pipeline approach, we performed a com-

prehensive comparison of distributions for various key fac-
tors between problem and non-problem cases in IVF cycles. 
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We observed that successful IVF cycles generally tend to 
have higher numbers of COCs and mature oocytes, indicat-
ing better ovarian response and oocyte quality; higher blas-
tocyst formation rates are associated with non-problem cy-
cles; fertilization rates show less pronounced differences, 
suggesting that other factors may be more critical in deter-
mining cycle success. These findings provide valuable in-
sights into the factors differentiating successful and un-
successful IVF cycles, potentially guiding improvements in 
clinical protocols and patient management strategies. 

CONCLUSION 

This research contributes to the growing body of work 
aimed at integrating AI technologies into IVF treatment, 
where predictive models hold the potential to improve pa-
tient outcomes by personalizing treatment strategies. The 
combination of DNN and KAN architectures represents an 
innovative approach within AI-assisted IVF protocols, 
aligning with broader trends in medicine where ML and 
neural networks are being used to optimize complex de-
cision-making processes. As IVF technology continues to 
evolve, incorporating AI models tailored to specific clinical 
environments could significantly enhance the precision of 
fertility treatments, contributing to higher success rates 
and more individualized care. This study adds to these ad-
vancements by addressing the need for an adaptable, robust 
AI pipeline capable of handling the inherent variability of 
IVF patients and clinics. 
A notable innovation in our work is the integration of 

two fundamentally different neural network architectures, 
DNN and KAN, combined with the Venn-Abers approach 
for calibrated prediction. By merging these distinct learning 
methodologies, we developed a powerful metamodel with 
AUC = 0.75, PRC = 0.66, and MCE = 0.12, transforming data 
analytics in our quality management system. Unlike tra-
ditional time-lapse imaging, which often carries high un-
certainty in predictions, our approach extends predictive 
power beyond embryo selection, encompassing the entire 
IVF process, including the post-analytical phase. This com-
prehensive framework allows for enhanced quality assur-
ance and risk minimization at every stage of treatment. By 
incorporating a wide range of laboratory and clinical para-
meters, our model evaluates the overall effectiveness of IVF 
protocols and identifies systemic issues that may contribute 
to unsuccessful outcomes. 
The ongoing refinement of this model, along with con-

tinuous improvements in clinical and laboratory processes, 
promises to further enhance the success of IVF treatments. 

By providing a comprehensive, data-driven framework for 
analyzing and optimizing IVF protocols, this approach can 
lead to more effective infertility treatments. Future re-
search should focus on expanding the dataset to include 
more diverse patient demographics and clinical scenarios, 
incorporating additional factors that may influence IVF 
success rates, developing real-time predictive capabilities 
for immediate protocol adjustments, and exploring the po-
tential for personalized treatment optimization based on 
individual patient profiles and predicted outcomes with 
site-specific calibration. Without it, the model’s predictive 
accuracy diminishes across clinics. This underscores the 
need for site-specific adaptation to improve generalizabil-
ity. Additionally, the model’s reliance on retrospective data 
limits its ability to capture real-time changes in clinical 
practice or patient demographics. As IVF protocols evolve 
and new technologies emerge, there is a risk that the 
model’s predictions may become less accurate unless peri-
odically re-calibrated and updated with more recent data. 
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